The Regional Impacts of Climate Change

Other reports in this collection

2.3.5. Human Settlements, Energy, Industry, and Transport

The pattern of distribution of human settlements often reflects the uneven nature of resource endowments and availability between regions and within individual communities. In Africa, as elsewhere, there are heavy concentrations of human settlements within 60 km of coastal zones, in areas of high economic potential, in river and lake basins, in close proximity to major transportation routes, and in places that enjoy hospitable climatic regimes. Changes in climate conditions would have severe impacts not only on the pattern of distribution of human settlements but also on the quality of life in particular areas. For example, wetter coasts or drier conditions in up-country areas could lead to spontaneous migrations as an adaptive option. Similarly, the pattern of energy use could change radically as a result of technological adaptations arising from climate change.

IPCC (1996) and UNFCCC (1992) acknowledge that developing countries' energy demands must increase to meet their needs for economic development. This increase must occur so these countries can respond to their development needs and to support the needs of growing populations. More of this economic development will be in industrial and transport sectors than in any other sector. It has been argued that the growth of the energy, industry, and transport sectors is needed as countries go through their economic transitions, which will decrease their vulnerability. Current high dependence on land-based production activities-such as agriculture and fisheries-only increases the vulnerability of African countries. The energy, industry, and transport sectors are thus important in discussing vulnerability and adaptation.

2.3.5.1. Human Settlements

The main challenges likely to face African populations will emanate from the effects of extreme events such as tropical storms, floods, landslides, wind, cold waves, droughts, and abnormal sea-level rises that are expected as a result of climate change. These events are likely to exacerbate management problems relating to pollution, sanitation, waste disposal, water supply, public health, infrastructure, and technologies of production (IPCC, 1996).

Adaptation strategies lie mainly in relocating populations, efficient energy supply and use, introduction of adaptation technologies, and improved management systems. Because most of these strategies have high cost implications, existing economic constraints of African countries may present major obstacles. In addition, implementing some of these strategies may have aspects that go beyond costs; relocation of human settlements from low-lying coastal areas that are vulnerable to inundation, for example, is likely to create problems that go beyond cost implications and include changes in social structure-clear policies on land use, fortified by flexible land-tenure regimes, will be needed.

2.3.5.2. Energy

The impacts of climate change on the energy sector will be felt primarily through losses or changes in hydropower potential for electricity generation and the effects of increased runoff (and consequent siltation) on hydrogeneration, as well as changes in the growth rates of trees used for fuelwood. The total primary energy use in 1990 in sub-Saharan Africa (including South Africa) was broken down in the following shares: biomass fuels (53%), petroleum (26%), coal (14%), large-scale hydro (3%), natural gas (2%), and other renewables (2%). The most vulnerable areas of the energy sector to climate change in Africa are the provision of energy services for rural areas and, to some extent, for urban low-income needs. Table 2-9 shows that millions of cubic meters of wood are harvested each year for energy purposes. The extent of biomass dependence for the African energy sector is high; this dependence is critical because the source of biomass is supported only by the natural regeneration of indigenous natural forests. In addition to the primary energy sources listed in Table 2-10, dependence on charcoal is high in east and southern Africa, in countries such as Zambia and Tanzania; in Zambia, where charcoal provides 80% of urban household energy needs, 3.5 million tons of charcoal are produced annually from indigenous forests.


Table 2-9: Relative extent of rural population in selected African countries and associated fuelwood production.

Subregion Representative Country Fuelwood Production (103 m3) Population (103) Rural Population (%)

West Africa
Nigeria
90,699
95,198
77
 
Ghana
8,493
13,588
68
 
East Africa
Kenya
32,174
20,600
80
 
Ethiopia
37,105
43,557
88
 
Southern Africa
Zimbabwe
5,988
8,777
75
 
Botswana
NA
1,107
81
 
North Africa
Sudan
18,202
21,550
79
 
Egypt
1,962
46,909
54
 
Central Africa
Cameroon
9,389
9,873
58
 
Chad
3,137
5,018
73

Sources: Compiled from UNEP, 1990; ADB AEP, 1996.



Table 2-10: Estimates of primary energy supplies (%) in subregions' representative countries.

Subregion Representative Country Oil Coal Gas Biomass Electricity/Hydro

West Africa Nigeria
27
0.4
12.6
59
1
  Ghana
21
69
10
East Africa Kenya
21
1
70
8
  Ethiopia
8
90
2
Southern Africa Zimbabwe
10
50
25
15
  Botswana
17
6
73
4
North Africa Sudan
19
80
1
  Egypt
54
2
21
15
Central Africa Cameroon
19
67
14
  Chad
33
77
Average  
62.5

Sources: Compiled and computed from UNEP, 1990; ADB AEP, 1996.


(continues on next page...)



Other reports in this collection