Land Use, Land-Use Change and Forestry

Other reports in this collection

2.3.7. Accounting for Uncertainty

Uncertainty in accounting for land-use change and forestry activities includes not only measurement uncertainty but uncertainty in defining and quantifying baselines (when they are used) and uncertainty related to the interpretation of the Protocol's requirements, including the definitions of key terms. Discussion of the magnitude of these uncertainties and approaches for minimizing them appear in Section 2.2 and in subsequent chapters related to specific Articles. This section briefly describes options for incorporating uncertainty into the accounting framework.

All GHG emissions and removals reported under the Kyoto Protocol will be subject to uncertainty to varying degrees. Dispersed emission sources, for example, face many of the same measurement challenges as LULUCF activities. Uncertainty enters the accounting system in a different way under the accounting framework adopted for LULUCF, however, than it does for sources that form part of the baseline for the Kyoto Protocol. In the latter case, systematic and random errors will be present in the 1990 emissions baseline and the emissions inventory during the commitment period. As long as consistent methods are used to estimate emissions in both periods, the potential to introduce bias into the accounting system will be minimized. On the other hand, LULUCF activities for which Annex I countries gain credit will only enter as a credit during the commitment period for most Annex I Parties. As a result, systematic errors are not offset through subtraction of the same error during the baseline period. Similarly, any change in measurement methods would affect only net emissions during the commitment period, without a compensating change in emission baselines (and thus assigned amounts under the Kyoto Protocol).

Accounting rules can be used to adjust for data limitations and uncertainty. For example, conservative estimates of carbon benefits can be applied by including all pools expected to have reduced carbon stocks and only a selection of pools expected to have increased carbon stocks; only the pools that are measured and monitored would be claimed as a carbon benefit (Sathaye et al., 1997). Similarly, measurement uncertainty could be accounted for by adjusting estimated fluxes, based on the uncertainty in this estimate, in the direction that is likely to understate removals and overstate emissions. This approach would provide an incentive to reduce uncertainties to the extent that it is cost-effective to do so, but it would not require expensive monitoring of carbon pools that do not significantly affect the overall carbon balance of a site.

Other reports in this collection